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Triangulating Spaces

Definition Let v0, v1, . . . , vk be points of the Euclidean n-space Rn.The hyperplane spanned by
these points consists of all linear combinations

λ0v0 + λ1v1 + · · ·+ λkvk, λi ∈ R for each 0 ≤ i ≤ k and the sum
k∑

i=0

λi = 1.

The points are in general position if any subset of them spans a strictly smaller hyperplane. If
we regard Rn as a vector space, then

v0, v1, . . . , vk are in general position ⇐⇒ v1−v0, v2−v0, . . . , vk−v0 are linearly independent.

Given k+1 points v0, v1, . . . , vk in general position, we call the smallest convex set C (a polytope)
containing them a simplex of dimension k (or a k-simplex). The points v0, v1, . . . , vk are called
the vertices of the simplex. It is eay to check that if C the smallest convex set containing
v0, v1, . . . , vk, then

x ∈ C ⇐⇒ x = λ0v0 + λ1v1 + · · ·+ λkvk where λi ≥ 0 for each 0 ≤ i ≤ k and
k∑

i=0

λi = 1.

Examples

� a 0-simplex is a point

� a 1-simplex is a closed line segment

� a 2-simplex is a triangle

� a 3-simplex is a tetrahedron (solid)

Definition Let A and B be simplices and let the vertices of B be a subset of the vertices of A.
Then B is called a face of A, and it is denoted by A < B.

Two simplices are said to fit together nicely if they intersect only at a common face. A space is
said to be triagulable if it is homeomorphic to the union of a finite collection of simplexes which
fit together nicely in some Euclidean space.

Definition A simplicial complex K is a finite collection of simplices in some Euclidean space Rn

that satisfies the following conditions:

1. Every face of a simplex from K is also in K.

2. The non-empty intersection of any two simplices A, B is a face of both A and B.
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Definition A triangulation of a topological space X consists of a simplicial complex K and a
homeomorphism h : |K| → X, where |K| is the union of the simplices of K, and it is called a
polyhedron.

Definition A hole in a mathematical object is a topological structure which prevents the object
from being continuously shrunk to a point. When dealing with topological spaces, a disconnec-
tivity is interpreted as a hole in the space. Examples of holes are things like the “donut hole” in
the center of the torus, and a domain removed from a plane.

The genus of a surface is defined as the largest topological invariant number of nonintersecting
simple closed curves that can be drawn on the surface without separating it. Roughly speaking,
it is the number of holes in a surface.

Polyhedral Formula A formula relating the number of polyhedron vertices V, faces F, and
polyhedron edges E of a simply connected (i.e., genus 0) polyhedron (or polygon). It was
discovered independently by Euler (1752) and Descartes, so it is also known as the Descartes-
Euler polyhedral formula. The formula also holds for some, but not all, non-convex polyhedra.

The polyhedral formula states

V + F − E = 2,

where V = N0 is the number of polyhedron vertices, E = N1 is the number of polyhedron edges,
and F = N2 is the number of faces.

For genus g surfaces, the formula can be generalized to the Poincaré formula

χ = V + F − E = χ(g), where χ(g) = 2− 2g

is the Euler characteristic, sometimes also known as the Euler-Poincaré characteristic. The
polyhedral formula corresponds to the special case g = 0.

Definition A surface is closed if it is compact, connected, and has no boundary; in other words
it is compact, connected, Hausdorff space in which each point has a neighborhood homeomorphic
to the plane.

Classification Theorem Any closed surface is homeomorphic either to the sphere, or to the
shpere with a finite number of handles added, or to the sphere with a finite number of discs
removed and replaced by Möbius strips. No two of these surfaces are homeomorphic.

Gauss-Bonnet Formula Suppose M is a compact two-dimensional Riemannian manifold with
boundary ∂M. Let K be the Gaussian curvature of M, and let kg be the geodesic curvature of
∂M. Then ∫

M

K dA+

∫
∂M

kg ds = 2πχ(M),
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where dA is the element of area of the surface, and ds is the line element along the boundary of
M.

If the boundary ∂M is piecewise smooth, then we interpret the integral

∫
∂M

kg ds as the sum

of the corresponding integrals along the smooth portions of the boundary, plus the sum of the
angles by which the smooth portions turn at the corners of the boundary.

In particular,

� if T is a triangular region in M, then the Gauss-Bonnet formula is stated as∫
T

K dA = 2πχ(T )−
3∑

i=1

αi −
∫
∂T

kg ds

where
3∑

i=1

αi is the sum of the (exterior) turning angle at vertex of T. So, if T is a geodesic

triangle in M, i.e. T is a simply connected region bounded by geodesics in M, then the
geodesic curvature kg = 0 along the geodesics, the Euler characteristic χ(T ) = 1, and the
Gauss-Bonnet formula becomes∫

T

K dA = 2π −
3∑

i=1

αi −
∫
∂T

kg ds = 2π −
3∑

i=1

αi

Since the (exterior) turning angle at a corner is equal to π minus the interior angle, we can
rephrase the Gauss-Bonnet formula as follows:

The sum of interior angles of a geodesic triangle is equal to π plus the total curvature
enclosed by the triangle:

the sum of interior angles of T =
3∑

i=1

(π − αi) = π +

∫
T

K dA


= π if K ≡ 0 in T

≥ π if K ≥ 0 in T

≤ π if K ≤ 0 in T

In the case of the plane (where the Gaussian curvature is 0 and geodesics are straight lines),
we recover the familiar formula for the sum of (interior) angles in an ordinary triangle. On
the standard sphere, where the curvature is everywhere 1, we see that the (interior) angle
sum of geodesic triangles is always bigger than π.

� if M is a closed Riemannian surface, then∫
M

K dA = 2πχ(M).
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